Yüksek çözünürlüklü çok bantlı uydu imgelerinden karayolu ağı çıkarımı.


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Türkiye

Tezin Onay Tarihi: 2012

Tezin Dili: İngilizce

Öğrenci: Ersin Karaman

Danışman: YASEMİN ÇETİN

Özet:

In this thesis, an automatic road extraction algorithm for multi-spectral images is developed. The developed model extracts elongated structures from images by using edge detection, segmentation and clustering techniques. The study also extracts non-road regions like vegetative fields, bare soils and water bodies to obtain more accurate road map. The model is constructed in a modular approach that aims to extract roads with different characteristics. Each module output is combined to create a road score map. The developed algorithm is tested on 8-band WorldView-2 satellite images. It is observed that, the proposed road extraction algorithm yields 47 % precision and 70 % recall. The approach is also tested on the lower spectral resolution images with four-band, RGB and gray level. It is observed that the additional four bands provide an improvement of 12 % for precision and 3 % for recall. Road type analysis is also in the scope of this study. Roads are classified into asphalt, concrete and unpaved using Gaussian Mixture Models. Other linear objects such as railroads and water canals may also be extracted by this process. An algorithm that classifies drive roads and railroads for very high resolution images is also investigated. It is based on the Fourier descriptors that identify the presence of railroad sleepers. Water canals are also extracted in multi-spectral images by using spectral ratios that employ the near infrared bands. Structural properties are used to distinguish water canals from other water bodies in the image.