Sliding mode control algorithm development for anti-lock brake system


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2011

Öğrenci: AHMET OKYAY

Danışman: ENDER CİĞEROĞLU

Özet:

In this thesis, a sliding mode controller employing a new sliding surface for antilock brake system (ABS) is proposed, its stability is proven formally and its performance is compared with existing sliding mode controllers. The new sliding mode controller uses the integral-derivative surface, which includes error, its derivative and its integral, all at the same time. This and the already existing derivative surface, which includes error and its derivative only, are named zerothorder sliding surfaces. Their stability analysis is done using first-order auxiliary surfaces. Auxiliary surfaces equal the sliding surfaces when derivative of the error becomes zero. The first-order error surface, which includes only the error, and the integral surface, which includes error and its integral, were also designed for comparison. During design, tire brake force response is modelled as an uncertainty. Controllers are simulated on a road with an abrupt change in road coefficient of adhesion. Controller parameters used are optimized, which results in comparable stopping distances while braking on a constant coefficient of adhesion road. Effect of first order actuator dynamics with varying time constants and actuator absolute time delay were considered. Reaching and sliding properties of controllers were also investigated, using results on a constant coefficient of adhesion road. It is observed that zeroth-order sliding surfaces give smoother response for both derivative and integral-derivative cases. As the controllers employing error and derivative surfaces get unstable in the presence of actuator time delay, the integral-derivative surface, proposed in this study, stands as the best controller.