Design and development of a modular dynamic test system for resilient mechanical components and viscoelastic materials


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2016

Öğrenci: ERKİN BARIŞ BİLGİ

Danışman: GÖKHAN OSMAN ÖZGEN

Özet:

Vibration is a critical phenomenon because unwanted vibration causes energy wasting, noise, premature failure etc. For this reason, control and isolation of vibration has importance. Viscoelastic materials such as plastics, rubbers etc., which show both viscous and elastic behaviors under the effect of stress, are used in many different vibration control and isolation applications. In addition to viscoelastic materials, resilient mechanical components such as springs, vibration mounts etc. are also important for vibration control and isolation applications. Dynamic properties such as fatigue life, dynamic stiffness, damping properties of these materials and components play important roles to design an effective damping instrument or vibration isolator. On the other hand, dynamic properties are dependent on the frequency and/or temperature. As a result, there is a need for a dynamic test system which characterizes the dynamic properties with respect to the frequency and/or temperature. There are commercially available package test systems, which include both hardware and software components in one product, to determine the dynamic properties of corresponding materials and components. However, these test systems are expensive. The aim of this thesis is to design and develop a custom modular dynamic test system to characterize dynamic properties of viscoelastic materials and resilient mechanical components in 0-100 Hz frequency range with 3 kN maximum force at low and high temperatures. For this purpose, an original mechanical design is prepared for a modular dynamic test system considering the requirements, specifications and constraints.