Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2003
Tezin Dili: İngilizce
Öğrenci: Burak Yılmaz
Danışman: İSMAİL AYDIN
Özet:A numerical solution algorithm based on finite volume method is developed for unsteady, two-dimensional, depth-averaged shallow water flow equations. The model is verified using test cases from the literature and free surface data obtained from measurements in a laboratory flume. Experiments are carried out in a horizontal, rectangular channel with vertical solid boxes attached on the sidewalls to obtain freesurface data set in flows where three-dimensionality is significant. Experimental data contain both subcritical and supercritical states. The shallow water equations are solved on a structured, rectangular grid system. Godunov type solution procedure evaluates the interface fluxes using an upwind method with an exact Riemann solver. The numerical solution reproduces analytical solutions for the test cases successfully. Comparison of the numerical results with the experimental two-dimensional free surface data is used to illustrate the limitations of the shallow water equations and improvements necessary for better simulation of such cases.