Investigation of undergraduate students mental models about the quantization of physical observables


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Eğitim Fakültesi, Matematik ve Fen Bilimleri Eğitimi Bölümü, Türkiye

Tezin Onay Tarihi: 2012

Öğrenci: DİDİŞ NİLÜFER

Eş Danışman: ALİ ERYILMAZ, ŞAKİR ERKOÇ

Özet:

The purpose of this research is to investigate undergraduate students’ mental models about the quantization of physical observables. The research was guided by ethnography, case study, and content analysis integrated to each other. It focused on second-year physics and physics education students, who were taking the Modern Physics course at the Department of Physics, at Middle East Technical University. Wide range of data was collected by interview, observation, test, diary, and other documents during 2008-2 academic semester. The findings obtained from the qualitative analysis of the data indicated the following conclusions: (1) Students displayed six different mental models, defined as Scientific Model, Primitive Scientific Model, Shredding Model, Alternating Model, Integrative Model, and Evolution Model, about the quantization of physical observables. (2) Students’ models were influenced by the external sources such as textbooks (explanations in textbooks, bringing textbook into the classes, and the use of one or both textbooks), instructional elements (explanations in instruction, taking notes in classes, and studying before and after the classes+taking notes in classes+attending classes regularly), topic order, and classmate; they were influenced by the internal sources such as meta-cognitive elements, motivation, belief (the nature of science and the nature of quantum physics concepts), and familiarity and background about the concepts. (3) The models displayed by students developed with the contribution of these sources in different proportions. Furthermore, although upgrading in models was observed within the cases of quantization, students’ mental models about the quantization of physical observables are context dependent, and stable during the semester.