Wave drag optimization of high speed aircraft


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Havacılık ve Uzay Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2015

Öğrenci: CAN ÇITAK

Danışman: SERKAN ÖZGEN

Özet:

Supersonic flight has been the subject of the last half century. Both military and civil projects have been running on to design aircraft that will fly faster than the speed of sound. Developing technology and increasing experience leads to faster, more fuel – efficient, longer ranged aircraft designs. These vehicles have the advantage of shortening travelling times in the civilian role and performing missions with greater success in the military role. Aerodynamic design is the main argument of high speed aircraft improvement. Having less supersonic drag force, which is greater than double of the subsonic case for conventional aircraft, is the ultimate goal of the aircraft designers for supersonic design. Optimizing aerodynamic characteristics of supersonic air vehicles by reducing wave drag is the main purpose of this thesis. A computational tool using computational fluid dynamics, analytical and numerical methods is developed in order to meet this goal. Firstly, wave drag coefficient solver algorithm is generated on a MATLAB interface. Then, the solver is validated with different geometries by using computational fluid dynamics simulations at various speeds. ANSYS Fluent is used for flow simulations. Next, gradient-based constrained optimization algorithm is employed to minimize the wave drag coefficient of a supersonic aircraft design. In addition, test cases are selected to observe the success of the wave drag coefficient optimization program for different situations. Finally, fighter aircraft geometry is optimized with respect to engine size constraints.