Tezin Türü: Doktora
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2012
Öğrenci: ÖZGÜR DENİZ ÖNÜR
Danışman: ABDULLAH AYDIN ALATAN
Özet:Subjective video quality and video decoding complexity are jointly optimized in order to determine the video encoding parameters that will result in the best Quality of Experience (QoE) for an end user watching a video clip on a mobile device. Subjective video quality is estimated by an objective criteria, video quality metric (VQM), and a method for predicting the video quality of a test sequence from the available training sequences with similar content characteristics is presented. Standardized spatial index and temporal index metrics are utilized in order to measure content similarity. A statistical approach for modeling decoding complexity on a hardware platform using content features extracted from video clips is presented. The overall decoding complexity is modeled as the sum of component complexities that are associated with the computation intensive code blocks present in state-of-the-art hybrid video decoders. The content features and decoding complexities are modeled as random parameters and their joint probability density function is predicted as Gaussian Mixture Models (GMM). These GMMs are obtained off-line using a large training set comprised of video clips. Subsequently, decoding complexity of a new video clip is estimated by using the available GMM and the content features extracted in real time. A novel method to determine the video decoding capacity of mobile terminals by using a set of subjective decodability experiments that are performed once for each device is also proposed. Finally, the estimated video quality of a content and the decoding capacity of a device are combined in a utility-complexity framework that optimizes complexity-quality trade-off to determine video coding parameters that result in highest video quality without exceeding the hardware capabilities of a client device. The simulation results indicate that this approach is capable of predicting the user viewing satisfaction on a mobile device.