Determination of stress intensity factors in cracked panels reinforced with riveted stiffeners


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Havacılık ve Uzay Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2012

Öğrenci: MEHMET BURAK SAYAR

Eş Danışman: RIZA GÜRBÜZ, ALTAN KAYRAN

Özet:

This thesis presents a study about the determination of the stress intensity factors in cracked sheets with riveted stiffeners. Stress intensity factors are determined with both analytical method and finite element method for different combination of rivet/stringer spacing and stringer to sheet stiffness ratio. Analytical part of the thesis is a replication of the original study of Poe which assumes rigid rivet connections with no stringer offset. In the analytical part, the whole systems of equations of Poe are re-derived, and it is shown that there are two typographical errors in the expressions for the calculation of the influence coefficients of the cracked sheet and the stringer. Major objective of the analytical part is to develop a computer code which calculates the variation of the normalized stress intensity factor with the crack length for any combination of rivet/stringer spacing and stringer to sheet stiffness ratio. Analytical part of the study also covers the effect of broken stiffener on the stress intensity factor of the cracked sheet. The stress intensity factors of stiffened cracked sheets are calculated by the finite element method by incorporating fastener flexibility and stringer offset. Finite element solutions are performed by Franc2D/L and Abaqus, and comparisons are made. The effect of geometry, fastener flexibility, and stringer offset on the stress intensity factors are studied by presenting normalized stress intensity factor versus crack length curves. Finally, as a case study a sample damage tolerant stiffened panel is designed according to FAR 25 safety criteria. Experiments are performed for determining mechanical and crack growth properties of Al 2124 which is used as the material in the case study. Present study showed that the most significant effect on the stress intensity factor is seen when stringer-cracked sheet offset is included in the analysis model.