Trajectory tracking control of unmanned ground vehicles in mixed terrain


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2012

Öğrenci: GÖKHAN BAYAR

Danışman: AHMET BUĞRA KOKU

Özet:

Mobile robots are commonly used to achieve tasks involving tracking a desired trajectory and following a predefined path in different types of terrains that have different surface characteristics. A mobile robot can perform the same navigation task task over different surfaces if the tracking performance and accuracy are not essential. However, if the tracking performance is the main objective, due to changing the characteristics of wheel-ground interaction, a single set of controller parameters or an equation of motion might be easily failing to guarantee a desired performance and accuracy. The interaction occurring between the wheels and ground can be integrated into the system model so that the performance of the mobile robot can be enhanced on various surfaces. This modeling approach related to wheel-ground interaction can also be incorporated into the motion controller. In this thesis study, modeling studies for a two wheeled differential drive mobile robot and a steerable four-wheeled robot vehicle are carried out. A strategy to achieve better tracking performance for a differential drive mobile robot is developed by introducing a procedure including the effects of external wheel forces; i.e, traction, rolling and lateral. A new methodology to represent the effects of lateral wheel force is proposed. An estimation procedure to estimate the parameters of external wheel forces is also introduced. Moreover, a modeling study that is related to show the effects of surface inclination on tracking performance is performed and the system model of the differential drive mobile robot is updated accordingly. In order to accomplish better trajectory tracking performance and accuracy for a steerable four-wheeled mobile robot, a modeling work that includes a desired trajectory generator and trajectory tracking controller is implemented. The slippage is defined via the slip velocities of steerable front and motorized rear wheels of the mobile robot. These slip velocities are obtained by using the proposed slippage estimation procedure. The estimated slippage information is then comprised into the system model so as to increase the performance and accuracy of the trajectory tracking tasks. All the modeling studies proposed in this study are tested by using simulations and verified on experimental platforms.