Face detection in active robot vision


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2004

Öğrenci: MURAT ÖNDER

Danışman: UĞUR HALICI

Özet:

The main task in this thesis is to design a robot vision system with face detection and tracking capability. Hence there are two main works in the thesis: Firstly, the detection of the face on an image that is taken from the camera on the robot must be achieved. Hence this is a serious real time image processing task and time constraints are very important because of this reason. A processing rate of 1 frame/second is tried to be achieved and hence a fast face detection algorithm had to be used. The Eigenface method and the Subspace LDA (Linear Discriminant Analysis) method are implemented, tested and compared for face detection and Eigenface method proposed by Turk and Pentland is decided to be used. The images are first passed through a number of preprocessing algorithms to obtain better performance, like skin detection, histogram equalization etc. After this filtering process the face candidate regions are put through the face detection algorithm to understand whether there is a face or not in the image. Some modifications are applied to the eigenface algorithm to detect the faces better and faster. Secondly, the robot must move towards the face in the image. This task includes robot motion. The robot to be used for this purpose is a Pioneer 2-DX8 Plus, which is a product of ActivMedia Robotics Inc. and only the interfaces to move the robot have been implemented in the thesis software. The robot is to detect the faces at different distances and arrange its position according to the distance of the human to the robot. Hence a scaling mechanism must be used either in the training images, or in the input image taken from the camera. Because of timing constraint and low camera resolution, a limited number of scaling is applied in the face detection process. With this reason faces of people who are very far or very close to the robot will not be detected. A background