Derin tuzlu su akiferlerinde karbon dioksit tecridinin modellenmesi


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Petrol ve Doğal Gaz Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2005

Tezin Dili: İngilizce

Öğrenci: Başar Başbuğ

Danışman: FEVZİ GÜMRAH

Özet:

CO2 is one of the hazardous greenhouse gases causing significant changes in the environment. The sequestering CO2 in a suitable geological medium can be a feasible method to avoid the negative effects of CO2 emissions in the atmosphere. CO2 sequestration is the capture of, separation, and long-term storage of CO2 in underground geological environments. A case study was simulated regarding the CO2 sequestration in a deep saline aquifer. The compositional numerical model (GEM) of the CMG software was used to study the ability of the selected aquifer to accept and retain the large quantities of injected CO2 at supercritical state for long periods of time (200 years). A field-scale model with two injectors and six water producers and a single-well aquifer model cases were studied. In a single-well aquifer model, the effects of parameters such as vertical to horizontal permeability ratio, aquifer pressure, injection rate, and salinity on the sequestration process were examined and the sensitivity analyses were performed after simulating the field-scale model. The supercritical CO2, one-state fluid which exhibits both gas and liquid-like properties, and gaseous CO2 were sequestered in the forms of free CO2 bubble, dissolved CO2 in brine and precipitated CO2 with calcite mineral in a deep saline aquifer. The isothermal condition was assumed during injection and sequestration processes. The change in porosity and permeability values that might have occurred due to mineralization and CO2 adsorption on rock were not considered in this study. Vertical to horizontal permeability ratio and initial pressure conditions were the most dominating parameters affecting the CO2 saturation in each layer of the aquifer whereas CO2 injection rate influenced CO2 saturation in middle and bottom layers since CO2 was injected through bottom layer.