Structural modelling, analysis, evaluation and strengthening of Perge Southern Gate Hellenistic towers


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2012

Öğrenci: ORHAN METE IŞIKOĞLU

Eş Danışman: AHMET TÜRER, NERİMAN ŞAHİN GÜÇHAN

Özet:

The successive struggle of Perge Antique City to resist against aging is clearly signified by Hellenistic Towers Ruins, parts of which still reaches up to 20 m high. Being a most reflecting example located at Anatolia, it clearly signifies its construction period and function compared to other examples that constitutes the same features. However, There exist a certain requirement of detailed and wide ranging conservation study for finding remedy to cope with risk of further collapse, which is originated from the slender geometry of Towers Remains. Therefore, the need of a survey on the structural behaviour of towers with non-linear analytical modelling techniques is fulfilled in this study. Preliminary analytical modelling (linear-elastic, macro models) was performed by using SAP2000 while, following detailed discrete stone element modelling examinations were performed with ANSYS-Ls DYNA, ABAQUS Software. Verification for simulations were made with results related with ambient vibration dynamic testing performed at Eastern Tower and Closed-form, simple calculations. In the light of results bound to structural behaviour investigation on reconstitution, stability performance of today's ruins was examined against seismic activities. Four different strengthening methods were considered and their contributions to stability were compared in order to reach at the most appropriate intervention scheme obeying contemporary restoration criteria. The study formed a significant sub branch work of a restoration project of which charge was undertaken by SAYKA Restoration, Architecture Ltd. Co. Being a part of multi-disciplinary teamwork, structural investigation research was concluded to an optimum solution, which foreseen “minimum intervention to the building” assuring performance under seismic loading of large earthquakes.