Seismic behavior of autoclaved aerated concrete reinforced vertical panel buildings


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2017

Öğrenci: FURKAN GÖKMEN

Danışman: BARIŞ BİNİCİ

Özet:

In this study, the seismic behavior of Autoclaved Aerated Concrete (AAC) reinforced panel walls and buildings was investigated. The structural members were investigated under cyclic lateral loading and axial load and the results were compared with the previous tests. The main objective of this study was to provide recommendations for nonlinear analysis of the reinforced AAC panel walls and buildings. OpenSees plat-form was chosen as the computational platform. The walls were modeled with fiber sections. The fiber sections were composed of AAC and steel reinforcement fibers. The reinforcement was modeled with hysteretic material to provide the cyclic behav-ior. These fiber sections were used in nonlinear force based beam-column frame ele-ments in order to investigate the nonlinear behavior. Then, the panel walls previously tested at METU were simulated by controlling displacements method under increasing cyclic deformations. Axial load ratio (N/N0) was found to affect the model response; therefore, two sets of modeling parameters were proposed for cases less than and more vi than 10% of wall axial load carrying capacity. Using three plus one panel results, the four-panel wall models were found to satisfactorily estimate the multi-panel response. The full-scale building test was also modeled by using groups of maximum three pan-els. Static and incremental dynamic analyses were conducted to match the experi-mental results of the building. Afterward, an incremental dynamic analysis was con-ducted to observe the relationship between ground motion scale factor and maximum interstory drift ratio. The key outcomes from this thesis are; i) AAC buildings, due to their lightweight na-ture, are expected to behave in their pre-yielding regions under design earthquakes, ii) under extreme events, there seems to exist some deformation and energy dissipation capacity which can help AAC buildings to swing without collapse. Based on these results AAC buildings appear to be a good alternative for low rise construction in seis-mic regions.