Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye
Tezin Onay Tarihi: 2019
Tezin Dili: İngilizce
Öğrenci: HÜSEYİN ALPER ÇINAR
Danışman: Pınar Karagöz
Özet:The aim of this study is detecting events on social media by improving current solutions in terms of accuracy and time performance. An event is something that occurs in a short duration of time in a certain place. In this thesis, the problem is modelled as a streaming transaction process. Three different event detection method is adapted to our solution. First one is the keyword-based event detection method that looks for bursty keywords in a period. The second one is the clustering-based event detection method which is a version of the hierarchical clustering algorithm. And the last one is the hybrid event detection method of keyword-based and clustering-based algorithms. To specify the problem as streaming transaction process, all algorithms are implemented on top of S-Store. S-Store is a streaming OLTP engine having distributed, scalable and guaranteed ordered delivery features. All of the event detection methods are run and evaluated their performance with a real data set obtained from Twitter.