Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2009
Öğrenci: HASAN BALKAR ERDOĞAN
Danışman: NEVZAT GÜNERİ GENÇER
Özet:In this study, a P300 based Brain-Computer Interface (BCI) system design is realized by the implementation of the Spelling Paradigm. The main challenge in these systems is to improve the speed of the prediction mechanisms by the application of different signal processing and pattern classification techniques in BCI problems. The thesis study includes the design and implementation of a 10 channel Electroencephalographic (EEG) data acquisition system to be practically used in BCI applications. The electrical measurements are realized with active electrodes for continuous EEG recording. The data is transferred via USB so that the device can be operated by any computer. v Wiener filtering is applied to P300 Speller as a signal enhancement tool for the first time in the literature. With this method, the optimum temporal frequency bands for user specific P300 responses are determined. The classification of the responses is performed by using Support Vector Machines (SVM’s) and Bayesian decision. These methods are independently applied to the row-column intensification groups of P300 speller to observe the differences in human perception to these two visual stimulation types. It is observed from the investigated datasets that the prediction accuracies in these two groups are different for each subject even for optimum classification parameters. Furthermore, in these datasets, the classification accuracy was improved when the signals are preprocessed with Wiener filtering. With this method, the test characters are predicted with 100% accuracy in 4 trial repetitions in P300 Speller dataset of BCI Competition II. Besides, only 8 trials are needed to predict the target character with the designed BCI system.