Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü, Türkiye
Tezin Onay Tarihi: 2005
Tezin Dili: İngilizce
Öğrenci: Çağlar Çelik
Danışman: GÜLSÜN GÖKAĞAÇ ARSLAN
Özet:Carbon supported surfactant, such as 1-decanethiol and octadecanethiol, stabilized platinum and platinum/ruthenium species have been prepared recently. In this thesis, for the first time, 1-hexanethiol has been used as an organic stabilizer for the preparation of carbon supported platinum and platinum/ruthenium nanoparticle catalysts. These new catalysts were employed for methanol oxidation reaction, which were used for direct methanol fuel cells. Cyclic voltammetry, X-ray photoelectron spectroscopy and transmission electron microscopy have been used in order to determine the nature of the catalysts. The effect of temperature and time on catalytic activity of catalysts were examined and the maximum catalytic activity was observed for carbon supported 1-hexanethiol stabilized platinum nanoparticle catalyst (with 1:1 thiol/platinum molar ratio) which was heated up at 200oC for 5 hours. The particle size of platinum nanoparticles was determined to be ~ 10 nm in diameter. The size and distribution of metal nanoparticles on carbon support, the Pt/Ru surface composition, the relative amount of Pt(0), Pt(II) and Pt(IV) and the removal of organic surfactant molecules around the metal nanoparticles were found to be important in determining the catalytic activity of electrodes towards methanol oxidation reaction. A significant decrease in catalytic activity was observed for carbon supported 1-hexanethiol stabilized Pt75Ru25 and Pt97Ru3 (with 1:1 thiol/PtRu molar ratio) with respect to carbon supported 1-hexanethiol stabilized Pt (with 1:1 thiol/platinum molar ratio). This result might be due to unremoved stabilizer shell around platinum/ruthenium nanoparticles and increase in amount of Pt(II) and Pt(IV) compared to Pt(0) where the methanol oxidation occured.