Ultimate load capacity of optimally designed cellular beams


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Mühendislik Bilimleri Bölümü, Türkiye

Tezin Onay Tarihi: 2011

Öğrenci: FERHAT ERDAL

Danışman: TURGUT TOKDEMİR

Özet:

Cellular beams became increasingly popular as an efficient structural form in steel construction since their introduction. Their sophisticated design and profiling process provides greater flexibility in beam proportioning for strength, depth, size and location of circular holes. The purpose of manufacturing these beams is to increase overall beam depth, the moment of inertia and section modulus, which results in greater strength and rigidity. Cellular beams are used as primary or secondary floor beams in order to achieve long spans and service integration. They are also used as roof beams beyond the range of portal-frame construction, and are the perfect solution for curved roof applications, combining weight savings with a low-cost manufacturing process. The purpose of the current research is to study optimum design, ultimate load capacity under applied load and finite element analysis of non-composite cellular beams. The first part of the research program focuses on the optimum design of steel cellular beams using one of the stochastic search methods called “harmony search algorithm”. The minimum weight is taken as the design objective while the design constraints are implemented from the Steel Construction Institute. Design constraints include the displacement limitations, overall beam flexural capacity, beam shear capacity, overall beam buckling strength, web post flexure and buckling, vierendeel bending of upper and lower tees and local buckling of compression flange. The design methods adopted in this publication are consistent with BS5950. In the second part of the research, which is the experimental work, twelve non-composite cellular beams are tested to determine the ultimate load carrying capacities of these beams under using a hydraulic plug to apply point load. The tested cellular beam specimens have been designed by using harmony search algorithm. Finally, finite element analysis program is used to perform elastic buckling analysis and predict critical loads of all steel cellular beams. Finite element analysis results are then compared with experimental test results for each tested cellular beam.