Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2008
Öğrenci: FERAY ÖZSAKABAŞI
Danışman: SEVDA ZUHAL AKYÜREK
Özet:Among the various remote sensing methods that can be used to map forest areas, the K Nearest Neighbor (KNN) supervised classification method is becoming increasingly popular for creating forest inventories in some countries. In this study, the utility of the KNN algorithm is evaluated for forest/non-forest/water stratification. Antalya is selected as the study area. The data used are composed of Landsat TM and Landsat ETM satellite images, acquired in 1987 and 2002, respectively, SRTM 90 meters digital elevation model (DEM) and land use data from the year 2003. The accuracies of different modifications of the KNN algorithm are evaluated using Leave One Out, which is a special case of K-fold cross-validation, and traditional accuracy assessment using error matrices. The best parameters are found to be Euclidean distance metric, inverse distance weighting, and k equal to 14, while using bands 4, 3 and 2. With these parameters, the cross-validation error is 0.009174, and the overall accuracy is around 86%. The results are compared with those from the Maximum Likelihood algorithm. KNN results are found to be accurate enough for practical applicability of this method for mapping forest areas.