Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2015
Tezin Dili: İngilizce
Öğrenci: Mehdi Duman
Danışman: ŞENAN ECE SCHMİDT
Özet:Serial bus communication is widely used in different application areas such as Ethernet in computer networking, CAN bus in in-vehicle communications, MIL-STD 1553B in military avionics and UART for peripheral device communication. This thesis work presents UNIBUS (Universal Bus); an abstract, generic block level hardware architecture for implementing serial bus interfaces. UNIBUS realizes the physical and data link layer functions supporting the strict timing requirements for bit operations and synchronization. The hardware blocks and signal interfaces among these blocks are designed to separate the protocol specific and protocol independent components to increase reusability. A specific serial bus protocol can be implemented using UNIBUS by defining the protocol specific operations and interfaces. The versatility of UNIBUS is demonstrated by realizing CAN, UART, ARINC-708, ARINC-717 and MIL-STD-1553B on this architecture. These serial bus interfaces are purposely selected to be from different application areas and levels of complexity. All these interfaces are implemented using MODELSIM simulation tool and tested by realizing a sender and receiver that exchange messages as specified. Furthermore MIL-STD- 1553B is fully implemented on FPGA and its correctness is verified by communication to a commercial chip. The analysis of the resource and power consumption of the realizations shows that the generality of the architecture does not decrease the efficiency of the implementations. UNIBUS decreases the hardware development time for existing and possibly new serial bus protocols by providing the readiliy designed blocks and signal interfaces. Furthermore UNIBUS increases the reliability of the design as the reused protocol independent components that are common among different protocols need to be verified only once and the blocks together with their interfaces are clearly defined. UNIBUS can be both used for the development of full scale serial bus interface components to be used in real systems as well as developing test benches for existing products. In such deployment, a given bus interface’s desired functions can be implemented on UNIBUS to achieve a communicating counterpart for the tested component.