Processing and characterization of carbon nanotube based conductive polymer composites


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2010

Öğrenci: SERTAN YEŞİL

Danışman: GÖKNUR BAYRAM

Özet:

The aim of this study was to improve the mechanical and electrical properties of conductive polymer composites. For this purpose, different studies were performed in this dissertation. In order to investigate the effects of the carbon nanotube (CNT) surface treatment on the morphology, electrical and mechanical properties of the composites, poly(ethylene terephthalate) (PET) based conductive polymer composites were prepared by using as-received, purified and modified carbon nanotubes in a twin screw extruder. During the purification of carbon nanotubes, surface properties of carbon nanotubes were altered by purifying them with nitric acid (HNO3), sulfuric acid (H2SO4), ammonium hydroxide (NH4OH) and hydrogen peroxide (H2O2) mixtures. Electron Spectroscopy for Chemical Analysis (ESCA) results indicated the removal of metallic catalyst residues from the structure of carbon nanotubes and increase in the oxygen content of carbon nanotube surface as a result of purification procedure. Surface structure of the purified carbon nanotubes was also modified by treatment with sodium dodecyl sulfate (SDS), poly(ethylene glycol) (PEG) and diglycidyl ether of Bisphenol A (DGEBA). Fourier Transformed Infrared Spectroscopy (FTIR) spectra of the carbon nanotube samples indicated the existence of functional groups on the surfaces of carbon nanotubes after modification. All composites prepared with purified and modified carbon nanotubes had higher electrical resistivities, tensile and impact strength values than those of the composite based on as-received carbon nanotubes, due to the functional groups formed on the surfaces of carbon nanotubes during surface treatment. In order to investigate the effects of alternative composite preparation methods on the electrical and mechanical properties of the composites, in-situ microfiber reinforced conductive polymer composites consisting of high density polyethylene (HDPE), poly(ethylene terephthalate) and carbon nanotubes were prepared in a twin screw extruder followed by hot stretching of PET/CNT phase in HDPE matrix. Composites were produced by using as-received, purified and PEG treated carbon nanotubes. SEM micrographs of the hot stretched composites pointed out the existence of in-situ PET/CNT microfibers dispersed in HDPE matrix up to 1 wt. % carbon nanotube loadings. Electrical conductivity values of the microfibrillar composites were higher than that of the composites prepared without microfiber reinforcement due to the presence of continuous PET/CNT microfibers with high electrical conductivity in the structure. To investigate the potential application of conductive polymer composites, the effects of surfactant usage and carbon nanotube surface modification; on the damage sensing capability of the epoxy/carbon nanotube/glass fiber composite panels during mechanical loadings were studied. Surface modification of the carbon nanotubes was performed by using hexamethylene diamine (HMDA). 4-octylphenol polyethoxylate (nonionic) (Triton X-100) and cetyl pyridinium chloride (cationic) (CPC) were used as surfactants during composite preparation. Electrical resistivity measurements which were performed during the impact, tensile and fatigue tests of the composite panels showed the changes in damage sensing capabilities of the composites. Surface treatment of carbon nanotubes and the use of surfactants decreased the carbon nanotube particle size and improved the dispersion in the composites which increased the damage sensitivity of the panels.