Tezin Türü: Doktora
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2012
Öğrenci: ERGİN KILIÇ
Danışman: MELİK DÖLEN
Özet:Most engineering systems are highly nonlinear in nature and thus one could not develop efficient mathematical models for these systems. Artificial neural networks, which are used in estimation, filtering, identification and control in technical literature, are considered as universal modeling and functional approximation tools. Unfortunately, developing a well trained monolithic type neural network (with many free parameters/weights) is known to be a daunting task since the process of loading a specific pattern (functional relationship) onto a generic neural network is proven to be a NP-complete problem. It implies that if training is conducted on a deterministic computer, the time required for training process grows exponentially with increasing size of the free parameter space (and the training data in correlation). As an alternative modeling technique for nonlinear dynamic systems; this thesis proposed a general methodology for structured neural network topologies and their corresponding applications are realized. The main idea behind this (rather classic) divide-and-conquer approach is to employ a priori information on the process to divide the problem into its fundamental components. Hence, a number of smaller neural networks could be designed to tackle with these elementary mapping problems. Then, all these networks are combined to yield a tailored structured neural network for the purpose of modeling the dynamic system under study accurately. Finally, implementations of the devised networks are taken into consideration and the efficiency of the proposed methodology is tested on four different types of mechanical systems.