A hybrid recommendation system capturing the effect of time and demographic data


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2010

Öğrenci: FULYA OKTAY

Danışman: FERDA NUR ALPASLAN

Özet:

The information that World Wide Web (WWW) provides have grown up very rapidly in recent years, which resulted in new approaches for people to reach the information they need. Although web pages and search engines are indeed strong enough for us to reach what we want, it is not an efficient solution to present data and wait people to reach it. Some more creative and beneficial methods had to be developed for decreasing the time to reach the information and increase the quality of the information. Recommendation systems are one of the ways for achieving this purpose. The idea is to design a system that understands the information user wants to obtain from user actions, and to find the information similar to that. Several studies have been done in this field in order to develop a recommendation system which is capable of recommending movies, books, web sites and similar items like that. All of them are based on two main principles, which are collaborative filtering and content based recommendations. Within this thesis work, a recommendation system approach which combines both content based (CB) and collaborative filtering (CF) approaches by capturing the effect of time like purchase time or release time. In addition to this temporal behavior, the influence of demographic information of user on purchasing habits is also examined this system which is called “TDRS”. .