Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2011
Öğrenci: MİNE YOLDAŞ
Danışman: FERDA NUR ALPASLAN
Özet:This study aims to predict the binding affinity of the PCP-like compounds by means of molecular hydrophobicity. Molecular hydrophobicity is an important property which aff ects the binding affinity of molecules. The values of molecular hydrophobicity of molecules are obtained on three-dimensional coordinate system. Our aim is to reduce the number of points on the hydrophobicity surface of the molecules. This is modeled by using self organizing maps (SOM) and k-means clustering. The feature sets obtained from SOM and k-means clustering are used in order to predict binding affinity of molecules individually. Support vector regression and partial least squares regression are used for prediction.