Effect of preparation and operation parameters on performance of polyethersulfone based mixed matrix gas separation membranes


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2009

Öğrenci: ELİF KARATAY

Eş Danışman: LEVENT YILMAZ, HALİL KALIPÇILAR

Özet:

Membrane processes have been considered as promising alternatives to other competing technologies in gas separation industry. Developing new membrane morphologies are required to improve the gas permeation properties of the membranes. Mixed matrix membranes composing of polymer matrices and distributed inorganic/organic particles are among the promising, developing membrane materials. In this study, the effect of low molecular weight additive (LMWA) type and concentration on the gas separation performance of neat polyethersulfone (PES) membranes and zeolite SAPO-34 containing PES based mixed matrix membranes was investigated. Membranes were prepared by solvent evaporation method and annealed above the glass transition temperature (Tg) of PES in order to remove the residual solvent and erase the thermal history. They were characterized by single gas permeability measurements of H2, CO2, and CH4 as well as scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Various LMWAs were added to the neat PES membrane at a concentration of 4 wt %. Regardless of the type, all of the LMWAs had an anti-plasticization effect on PES gas permeation properties. 2-Hydroxy 5-Methyl Aniline, HMA, was selected among the other LMWAs for parametric study on the concentration effect of this additive. The incorporation of SAPO-34 to PES membranes increased the permeabilities of all gases with a slight loss in selectivities. However, the addition of HMA to PES/SAPO-34 membranes increased the ideal selectivities well above the ideal selectivities of PES/HMA membranes, while keeping the permeabilities of all the gases above the permeabilities of both pure PES and PES/HMA membranes.