Ground motion prediction equations based on simulated ground motions


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2018

Öğrenci: KADER GÖZENER

Danışman: AYŞEGÜL ASKAN GÜNDOĞAN

Özet:

Ground Motion Prediction Equations (GMPEs) are one of the key elements in seismic hazard assessment to estimate ground motion intensity measures by basically taking into account source, path and site effects. Most of the existing predictive models are derived from databases compiled from real (or observed) ground motion data. However, in data-poor regions, a novel practice to develop new GMPEs is to use simulated or hybrid ground motion datasets for performing reliable seismic hazard analysis. Simulations obtained from stochastic, deterministic or hybrid methods can provide reliable ground motion estimates and assist to understand the mechanisms of the earthquakes. This study starts with a discussion on the theory of stochastic finitefault technique and the simulation process including source mechanisms, site and path effect parameters from the 1992 Erzincan (Mw 6.6) and the 1999 Duzce (Mw 7.1) earthquakes. Then the development of the regional GMPEs based on the synthetic database compiled from the Erzincan and Duzce earthquake simulations is presented. The proposed predictive model is evaluated by residual analysis under the synthetic model development database and the recorded Turkish ground motion database. The trends of the proposed ground motion model are also compared to the existing regional, local and global GMPEs. These comparisons indicate a good agreement which is promising in the sense that the simulated ground motions can be contributed to the future development of GMPEs.