Sulfate resistance of blended cements with fly ash and natural pozzolan


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2006

Öğrenci: KEVSER DURU

Danışman: İSMAİL ÖZGÜR YAMAN

Özet:

Numerous agents and mechanisms are known to affect the durability of a concrete structure during its service life. Examples include freezing and thawing, corrosion of reinforcing steel, alkali-aggregate reactions, sulfate attack, carbonation, and leaching by neutral or acidic ground waters. Among these, external sulfate attack was first identified in 1908, and led to the discovery of sulfate resistant Portland cement (SRPC). Besides SRPC, another way of coping with the problem of sulfate attack is the use of pozzolans either as an admixture to concrete or in the form of blended cements This study presents an investigation on the sulfate resistance of blended cements containing different amounts of natural pozzolan and/or low-lime fly ash compared to ordinary Portland cement and sulfate resistant Portland cement. Within the scope of this study, an ordinary Portland cement (OPC) and five different blended cements were produced with different proportions of clinker, natural pozzolan, low-lime fly ash and limestone. For comparison, a sulfate resistant Portland cement (SRPC) with a different clinker was also obtained. For each cement, two different mixtures with the water/cement (w/c) ratios of 0.485 and 0.560 were prepared in order to observe the effect of permeability controlled by water/cement ratio. The performance of cements was observed by exposing the prepared 25x25x285 mm prismatic mortar specimens to 5% Na2SO4 solution for 78 weeks and 50mm cubic specimens for 52 weeks. Relative deterioration of the specimens was determined by length, density and ultrasonic pulse velocity change, and strength examination at different ages. It was concluded that depending on the amount and effectiveness of the mineral additives, blended cements were considered to be effective for moderate or high sulfate environments. Moreover, the cement chemistry and w/c ratio of mortars were the two parameters affecting the performance of mortars against an attack. As a result of this experimental study it was found out that time to failure is decreasing with the increasing w/c ratio and the effect of w/c ratio was more important for low sulfate resistant cements with higher C3A amounts when compared to high sulfate resistant cements with lower C3A amounts.