Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Petrol ve Doğal Gaz Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2011
Öğrenci: TUĞÇE BAYRAM
Danışman: SERHAT AKIN
Özet:The application of carbon-dioxide injection for enhanced oil recovery and/or sequestration purposes has gained impetus in the last decade. It is known that well test analysis plays a crucial role on getting information about reservoir properties, boundary conditions, etc. Although there are some studies related to the well test analysis in the fractured reservoirs, most of them are not focused on the carbon dioxide injection into the reservoir. Naturally fractured reservoirs (NFR) represent an important percentage of the worldwide hydrocarbon reserves and current production. Reservoir simulation is a fundamental technique in characterizing this type of reservoirs. Fracture properties are often not clear due to difficulty to characterize the fracture systems. On the other hand, well test analysis is a well known and widely applied reservoir characterization technique. Well testing in NFR provides two significant characteristic parameters, storativity ratio (ω) and interporosity flow coefficient (λ). The storativity ratio is related to fracture porosity. The interporosity flow coefficient can be linked to the shape factor which is a function of fracture spacing. In this study, the effects of fracture and fluid flow factors (geometry, orientation and flow properties) on pressure and pressure derivative behavior are studied by applying a reservoir simulation model. Model is utilized mainly for the observation of multiphase flow effects in CO2 flooded fractured reservoirs. Several runs are conducted for various ranges of the aforementioned properties in the CO2 flooded reservoir. Results of well test analysis are compared to the input data of simulation models on a parameter basis.