The preparation and characterization of zeolite framework stabilized ruthenium(0) nanoclusters; a superb catalyst for the hydrolysis of sodium borohydride and the hydrogenation of aromatics under mild conditions


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü, Türkiye

Tezin Onay Tarihi: 2010

Öğrenci: MEHMET ZAHMAKIRAN

Danışman: SAİM ÖZKAR

Özet:

The use of microporous materials with ordered porous structures as the hosts to stabilize metal nanoclusters has attracted particular interest in the catalysis because the pore size restriction could confine the growth of nanoclusters and lead to an increase in the percentage of catalytically active surface atoms. In this dissertation we report the preparation, characterization and the investigation of the catalytic performance of zeolite framework stabilized ruthenium(0) nanoclusters in the hydrolysis of sodium borohydride and the hydrogenation of aromatics. The zeolite framework stabilized ruthenium(0) nanoclusters were prepared by borohydride reduction of ruthenium(III)-exchanged zeolite-Y in aqueous solution at room temperature and isolated as black powders. Their characterization by using ICP-OES, XRD, TEM, ZC-TEM, HR-TEM, TEM-EDX, SEM, XPS, DR-UV-vis, far-IR, mid-IR, Raman spectroscopy, N2 adsorption-desorption technique and (P(C6H11)3)/(PC6H11O3) poisoning experiments reveal the formation of ruthenium(0) nanoclusters within the zeolite cages as well as on the external surface of zeolite without causing alteration in the framework lattice or loss in the crystallinity. The catalytic performance of zeolite framework stabilized ruthenium(0) nanoclusters depending on the various parameters was tested in the hydrolysis of sodium borohydride and the hydrogenation of aromatics. The important results obtained from these experiments can be listed as follows: (i) the zeolite framework stabilized ruthenium(0) nanoclusters provide a record total turnover number (103200 mol H2/mol Ru) and turnover frequency (33000 mol H2/mol Ru•h) in the hydrolysis of sodium borohydride at room temperature, (ii) they also catalyze the same reaction in the basic medium (in 5 wt % NaOH solution) at room temperature with the unprecedented catalytic activity (4000 mol H2/mol Ru•h) and lifetime (27200 mol H2/mol Ru), (iii) the isolated and vacuum dried samples of zeolite framework stabilized ruthenium(0) nanoclusters are active catalysts in the hydrogenation of cyclohexene, benzene, toluene and o-xylene in cyclohexane, they provide TOF values of 6150, 5660, 3200, and 1550 mol H2/mol Ru•h, respectively under mild conditions (at 22.0 ± 0.1 °C, and 40 ± 1 psig of initial H2 pressure), (iv) more importantly, the zeolite framework stabilized ruthenium(0) nanoclusters are the lowest temperature, most active, most selective (100 % selectivity with complete conversion) and longest lifetime catalyst hitherto known for the hydrogenation of benzene to cyclohexane in the solvent-free system (TTON of 2420 and TOF of 1040 mol benzene/mol Ru•h) under mild conditions (at 22.0 ± 0.1 °C, and 40 ± 1 psig of initial H2 pressure), (v) moreover, the resultant ruthenium(0) nanoclusters exhibit high durability throughout their catalytic use against agglomeration and leaching. This significant property makes them reusable catalyst without appreciable loss of their inherent activity.