Katı-gas tepkimeleri ile Ti,Cr,Mn,Fe,Co,Ni,Cu,Zn sülfür bileşiklerinin sentezi,yapısı ve iletkenlik özelliklerinin incelenmesi.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü, Türkiye

Tezin Onay Tarihi: 2005

Tezin Dili: İngilizce

Öğrenci: Mustafa Fatih Genişel

Danışman: AYŞEN YILMAZ

Özet:

In this study some of the first row transition metal oxides were transformed to metal sulfides by new solid gas reaction system. Transition metal sulfides have wide application area in industry and technology. Several techniques are known for the production of metal sulfides. Such as reactions between metal or metal oxide with H2S, precipitation in several liquid medium, reaction between metal and sulfur in closed vessel, chemical vapor deposition (CVD) technique. These techniques will have some disadvantages; for example, reactants are rarely available or expensive materials, their production systems are complicated and hard to set up these systems, products contain oxygen or hydrogen or corresponding metal sulfate as impurities. In our new sulfidizing system the reactants are metal oxides, carbon and SO2. These materials can be found easily. Especially, SO2 usage in this system is a big advantage of giving possibility of usage the hazardous waste product of SO2 in industry. The sulfidizing gas mixture was obtained by passing SO2 over activated carbon at 750 OC in a vertical tubular furnace. The obtained gas contains, mainly, CS2, CO and COS. The sulfidizing reactions took place in the horizontal tubular furnace at 450OC-1250 OC. The duration of the reaction, (three hours), and flow rate (60ml/min) of the SO2 gas were kept constant. The products were examined by X-ray powder diffraction and Raman scattering spectroscopy. All examined metal oxides were transformed to metal sulfides by sulfidizing gas mixture successfully. Ti3S5 was obtained from TiO2. Cr2S3 was obtained from Cr2O3. MnS (Alabandite) was obtained from MnO2. FeS and Fe1-xS (Pyrrhotite) were obtained from Fe2O3. Co9S8 (Cobaltpentlandite) and CoS (Jaipurite) were obtained from Co3O4. NiS was obtained from NiO. Cu7.2S, Cu1.6S (Calcocite-Q), Cu1.81S, Cu7S4 (Anilite) Cu9S5 (Digenite), Cu8S5 (Geerite) were