A prelude to the proximity interaction mapping of CXXC5

Ayaz G., Turan G., OLGUN Ç. E., Kars G., Karakaya B., Yavuz K., ...More

SCIENTIFIC REPORTS, vol.11, no.1, 2021 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 11 Issue: 1
  • Publication Date: 2021
  • Doi Number: 10.1038/s41598-021-97060-6
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Middle East Technical University Affiliated: Yes


CXXC5 is a member of the zinc-finger CXXC family proteins that interact with unmodified CpG dinucleotides through a conserved ZF-CXXC domain. CXXC5 is involved in the modulation of gene expressions that lead to alterations in diverse cellular events. However, the underlying mechanism of CXXC5-modulated gene expressions remains unclear. Proteins perform their functions in a network of proteins whose identities and amounts change spatiotemporally in response to various stimuli in a lineage-specific manner. Since CXXC5 lacks an intrinsic transcription regulatory function or enzymatic activity but is a DNA binder, CXXC5 by interacting with proteins could act as a scaffold to establish a chromatin state restrictive or permissive for transcription. To initially address this, we utilized the proximity-dependent biotinylation approach. Proximity interaction partners of CXXC5 include DNA and chromatin modifiers, transcription factors/co-regulators, and RNA processors. Of these, CXXC5 through its CXXC domain interacted with EMD, MAZ, and MeCP2. Furthermore, an interplay between CXXC5 and MeCP2 was critical for a subset of CXXC5 target gene expressions. It appears that CXXC5 may act as a nucleation factor in modulating gene expressions. Providing a prelude for CXXC5 actions, our results could also contribute to a better understanding of CXXC5-mediated cellular processes in physiology and pathophysiology.