A photoelectrochemical device for water splitting using oligoaniline-crosslinked [Ru(bpy)(2)(bpyCONHArNH(2))](+2) dye/IrO2 nanoparticle array on TiO2 photonic crystal modified electrode


YILDIZ H. B., Carbas B. B., Sonmezoglu S., KARAMAN M., Toppare L.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, cilt.41, sa.33, ss.14615-14629, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 41 Sayı: 33
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1016/j.ijhydene.2016.04.249
  • Dergi Adı: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.14615-14629
  • Anahtar Kelimeler: Photoelectrochemical cell, Photoanode, Conjugated polymer, Oxidation of water, Metal oxides, Visible light absorbing dyes, HYDROGEN-PRODUCTION, SOLAR-CELLS, DERIVATIVES, DEPOSITION, FUEL
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

This article describes the construction of photoelectrochemical cell system splitting water into hydrogen and oxygen using UV-vis light under constant applied voltage. Oligoaniline-crosslinked 2-(4-aminobenzyl)malonic acid functionalized IrO2 center dot nH(2)O nanoparticles and visible light absorbing dye, [Ru(bpy)(2)(bpyCONHArNH(2))(+2)] arrays on titanium dioxide (TiO2) photonic crystals modified electrodes were used as photoanode, and nanostructures based on bonding of Pt nanoparticles by using electropolymerization on poly 4-(2,5-di(thiophene-2-il)-1H-pyrrol-1-il)benzenamine P(SNS-NH2) conducting polymer modified gold electrode acted as cathode. Each component in anode and cathode of the system was characterized successfully using the methods related. Some optimization studies such as the molar concentration ratio of [Ru(bpy)(2)(bpyCONHArNH(2))(+2)] dye to IrO2 center dot nH(2)O nanoparticles, the optimum cycle number of each components and thickness of TiO2 film were performed in order to investigate the system performance. Furthermore, the photocurrent generation capacity of the photoanode against oxygen resulting and UV stability experiments of photoanode were also investigated. After obtained all necessary informations and improvements of the system, the cell was constructed, and corresponding hydrogen gas evolution from water splitting was calculated as 1.25 x 10(-8) mol/cm(2) by using a gas chromatography (GC). The cell generated a photocurrent with a quantum yield of 3.5%. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.