Silver Nanoparticles Synthesized by Microwave Heating: A Kinetic and Mechanistic Re-Analysis and Re-Interpretation

Creative Commons License

ÖZKAR S., Finke R. G.

JOURNAL OF PHYSICAL CHEMISTRY C, vol.121, no.49, pp.27643-27654, 2017 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 121 Issue: 49
  • Publication Date: 2017
  • Doi Number: 10.1021/acs.jpcc.7b06323
  • Journal Indexes: Science Citation Index Expanded, Scopus
  • Page Numbers: pp.27643-27654


A quantitative kinetics and mechanistic re-analysis is performed of an important 2016 paper that described the formation of Ag-n nanoparticles from the polyol reduction of silver nitrate in the presence of poly(N-vinylpyrrolidone) under microwave heating. Elegantly and expertly obtained, in operando synchrotron high-energy X-ray diffraction (HEXRD) data, integrated with the microwave heating for the first time, were used to follow the Ag-n nanoparticle formation reaction in real time and to obtain time-resolved, HEXRD peak areas for the formation of both Ag(111) and Ag(200) facets. Unfortunately, the subsequent kinetics and mechanistic analysis that resulted is far from the state-of-the-art and was done without citing nor using well-established literature of nanoparticle nucleation and growth kinetics and mechanisms that has been available for over 20 years. Herein, the data are re-analyzed and re-interpreted in light of the fitting of the kinetics data with the presently most widely cited and employed, deliberately minimalistic, disproof-based nanoparticle nucleation and growth mechanism, dating back to 1997, of the pseudoelementary steps of slow continuous nucleation, A + B (rate constant k(1)), and then fast, autocatalytic surface growth, A + B -> 2B (rate constant k(2)), where A is the starting Ag+ and B is the Ag-0 product. The two pseudoelementary step mechanism is shown to be able to account for the previously reported kinetics data even for these large, up to similar to 100 nm (i.e., 0.1 mu m) Ag-n nanoparticles, a remarkable result in its own right given that there are on the order of similar to 107 Ag(0) atoms in a similar to 100 nm particle formed from the reduction of similar to 107 Ag+ atoms in what must be >10(7) actual elementary steps. However, the k(2) rate constant in particular likely loses much of its value since it is an average over a large change in the percentage of surface atoms in the growing nanoparticle. The results lead to nine revisions of questionable to incorrect previous claims and conclusions, plus a series of eight insights and guidelines for future work in nanoparticle formation kinetics and mechanism. An extensive Supporting Information further discusses interesting questions regarding the issues in analyzing and understanding nanoparticle formation kinetics and the mechanism of such large, similar to 0.1 mu m-sized particles.