INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, cilt.53, sa.9, ss.2751-2770, 2015 (SCI-Expanded)
We consider a machine rescheduling problem that arises when a disruption such as machine breakdown occurs to a given schedule. Machine unavailability due to a breakdown requires repairing the schedule as the original schedule becomes infeasible. When repairing a disrupted schedule a desirable goal is to complete each disrupted job on time, i.e. not later than the planned completion time in the original schedule. We consider the case where processing times of jobs are controllable and compressing the processing time of a job requires extra processing cost. Usually, there exists a nonlinear relation between the processing time and manufacturing cost. We solve a bicriteria rescheduling problem that trades off the number of on-time jobs and manufacturing cost objectives. We give a mixed-integer second-order cone programming formulation for the problem. We develop a heuristic search algorithm to generate efficient solutions for the problem. Heuristic algorithm searches solution space by moving and swapping jobs among machines. We develop cost change estimates for job moves and swaps so that the heuristic implements only promising moves and hence generates a set of efficient solutions in reasonably short CPU times.