Sol-gel synthesis and photocatalytic activity of B and Zr co-doped TiO2


Kapusuz D., PARK J., ÖZTÜRK A.

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, cilt.74, ss.1026-1031, 2013 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 74 Konu: 7
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1016/j.jpcs.2013.02.022
  • Dergi Adı: JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
  • Sayfa Sayıları: ss.1026-1031

Özet

Effects of boron (B) and/or zirconium (Zr) doping on photocatalytic activity of sol-gel derived titania (TiO2) powders were investigated. A conventional, non-hydrous sol-gel technique was applied to synthesize the B, Zr doped/co-doped TiO2 powders. Doping was made at molar ratios of Ti/B=1 and Ti/Zr=10. Sol-gel derived xero-gels were calcined at 500 degrees C for 3 h. The crystal chemistry and the morphology of the undoped and B, Zr doped/co-doped TiO2 nanoparticles were investigated using X-ray diffractometer and scanning electron microscope. Nano-scale (9-46 nm) TiO2 crystallites were obtained after calcination. Doping and co-doping decreased the crystallite size. Photocatalytic activity was measured through the degradation of methylene blue (MB) under 1 h UV-irradiation using a UV-vis spectrophotometer. Results revealed that B doping into anatase caused the formation of oxygen vacancies, whereas Zr addition caused Ti substitution. Both B and Zr ions had a profound effect on the particle morphology and photocatalytic activity of TiO2. The photocatalytic activity of B and Zr doped TiO2 particles increased from 27% to 77% and 57%, respectively. The best activity (88.5%) was achieved by co-doping. (C) 2013 Elsevier Ltd. All rights reserved.