Using reactive artificial muscles to determine water exchange during reactions


Otero T. F. , Martinez J. G. , Zaifoglu B.

SMART MATERIALS AND STRUCTURES, cilt.22, 2013 (SCI İndekslerine Giren Dergi) identifier identifier

Özet

Artificial muscles based on films of conducting polymers translate film volume variations, driven by electrochemical reactions (Faradaic motors), into macroscopic movements with generation of mechanical energy. The reaction promotes exchange of counterions (anions here) and solvent molecules with the electrolyte. Attributing here both the film volume variation and the movement originated by these exchanges of ions and solvent, the described angles can be used to quantify the exchanged solvent. Different angles described by bending muscles consuming equal driving charges in electrolytes having the same cation and different anions were measured. The number of exchanged counterions is given by the consumed charge and the ion valence: this is a Faradaic reaction. The described angle fraction due to the exchanged anions is given by the number of anions and the crystallographic radius. Taking as reference the anion giving the shorter angle, whatever the consumed charge, the relative number of solvent molecules exchanged by the polymeric membrane during a reversible reaction was determined. Actuators and artificial muscles can be used as useful tools for, at least, an initial study of the solvent exchange during reactions in reactive gels.