EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, cilt.41, sa.14, ss.1989-2007, 2012 (SCI-Expanded)
In this paper, the effect of lead core heating and associated strength deterioration on the seismic response of bridges isolated with lead rubber bearings (LRB) is investigated as a function of the characteristics of the isolator and near fault ground motions with forward rupture directivity effect. Furthermore, the ability of bounding analyses to provide a design envelope for maximum isolator force and maximum isolator displacement is verified. For this purpose, a series of nonlinear dynamic analyses are conducted for LRB isolated bridges where both deteriorating and non-deteriorating force-deformation relationship of LRB were employed. The analyses are performed for both simulated and recorded ground motions. It is found that while the temperature rise in the lead core generally increases with increasing magnitude and number of near fault ground motion velocity pulses, it decreases with larger distances from the fault. It is also found that bounding analysis method provides conservative (envelope) estimates of maximum isolator displacement and maximum isolator force for design purposes that fulfill its intended purpose. Copyright (c) 2012 John Wiley & Sons, Ltd.