Prolate and oblate chiral liquid crystal spheroids


Sadati M., Martinez-Gonzalez J. A., Zhou Y., Qazvini N. T., Kurtenbach K., Li X., ...Daha Fazla

SCIENCE ADVANCES, cilt.6, sa.28, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 6 Sayı: 28
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1126/sciadv.aba6728
  • Dergi Adı: SCIENCE ADVANCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, CAB Abstracts, Compendex, EMBASE, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Liquid crystals are known to exhibit intriguing textures and color patterns, with applications in display and optical technologies. This work focuses on chiral materials and examines the palette of morphologies that arises when microdroplets are deformed into nonspherical shapes in a controllable manner. Specifically, geometrical confinement and mechanical strain are used to manipulate orientational order, phase transitions, and topological defects that arise in chiral liquid crystal droplets. Inspired by processes encountered in nature, where insects and animals often rely on strain and temperature to alter the optical appearance of dispersed liquid crystalline elements, chiral droplets are dispersed in polymer films and deformation induced by uniaxial or biaxial stretching. Our measurements are interpreted by resorting to simulations of the corresponding systems, thereby providing an in-depth understanding of the morphologies that arise in these materials. The reported structures and assemblies offer potential for applications in smart coatings, smart fabrics, and wearable sensors.