Water soluble nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrenesulfonic acid-co-maleic acid): Highly active, durable and cost effective catalysts in hydrogen generation from the hydrolysis of ammonia borane

Metin O., ÖZKAR S.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, cilt.36, sa.2, ss.1424-1432, 2011 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 36 Konu: 2
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1016/j.ijhydene.2010.10.070
  • Sayfa Sayıları: ss.1424-1432


This paper reports the in-situ generation and catalytic activity of nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrene sulfonic acid-co-maleic acid), PSSA-co-MA, in the hydrolysis of ammonia borane (AB). PSSA-co-MA stabilized nickel(0) (PSMA-Ni) and cobalt(0) nanoclusters (PSMA-Co) having average particle size of 2.1 +/- 0.6 and 5.3 +/- 1.6 nm, respectively, were generated by in-situ reduction of nickel(II) chloride or cobalt(II) chloride in an aquoues solution of NaBH(4)/H(3)NBH(3) in the presence of PSSA-co-MA. The in-situ generated nanoclusters were isolated from the reaction solution and characterized by UV-Vis, TEM, XRD and FT-IR techniques. Compared with the previous catalyst systems, PSMA-Ni and PSMA-Co are found to be highly active catalysts for hydrogen generation from the hydrolysis of AB with the turnover frequency values of 10.1 min(-1) for Ni and 25.7 min(-1) for Co. They are also very stable during the hydrolysis of AB providing 22450 and 17650 turnovers, respectively. The results of mercury poisoning experiments reveal that PSMA-Ni and PSMA-Co are heterogeneous catalysts in the hydrolysis of AB. Herein, we also report the results of a detailed kinetic study on the hydrogen generation from the hydrolysis of AB catalyzed by PSMA-Ni and PSMA-Co depending on catalyst concentration, substrate concentration, and temperature along with the activation parameters of catalytic hydrolysis of AB calculated from the kinetic data. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.