Isi Bilimi Ve Teknigi Dergisi/ Journal of Thermal Science and Technology, cilt.44, sa.1, ss.103-115, 2024 (SCI-Expanded)
Outdoor tests of photovoltaics module are crucial both for marketing and for research and technological developments. The electric generation performance and their degradation rates and lifetime are also related to different climatic conditions of the regions. In this work, the outdoor tests are carried out for six different photovoltaic (PV) modules under Arid-steppe Climate condition of Ankara, Türkiye. Their degradation rates are calculated by using linear regression (LR) and year on year (YOY) methods. The comparison between LR and YOY are carried out and with the other performed studies of different regions of world. In addition, it is investigated that how effective the climatic conditions on daily degradation rates. The results obtained are as follows: Mono-Si and Hetero-junction Silicon (HIT) cell modules degradation rates of 0.71/1.56 %/year and 0.84 %/year are respectively obtained by LR method and 0.57/0.90 %/year and 0.85%/year are respectively by YOY method. The degradation rates for Cupper Indium Selenide (CIS), Cupper Indium Gallium Selenide (CIGS) and microcrystalline Silicon/Amorphous Silicon (µc-Si/a-Si) modules have 1.73/1.49 %/year, 11.55/9.52 %/year and 1.48 %/year for LR method and 1.28/1.12 %/year, 9.94/9.53 %/year and 0.99 %/year for YOY method are obtained respectively. It is also obtained for the Polycrystalline Silicon Modules as 1.20/1.86 %/year degradation rates by LR method and 0.79/1.88 %/year degradation rates by YOY method.