2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024, Washington, Amerika Birleşik Devletleri, 16 - 22 Haziran 2024, ss.1622-1632
This paper presents Key2Mesh, a model that takes a set of 2D human pose keypoints as input and estimates the corresponding body mesh. Since this process does not involve any visual (i.e. RGB image) data, the model can be trained on large-scale motion capture (MoCap) datasets, thereby overcoming the scarcity of image datasets with 3D labels. To enable the model's application on RGB images, we first run an off-the-shelf 2D pose estimator to obtain the 2D keypoints, and then feed these 2D keypoints to Key2Mesh. To improve the performance of our model on RGB images, we apply an adversarial domain adaptation (DA) method to bridge the gap between the MoCap and visual domains. Crucially, our DA method does not require 3D labels for visual data, which enables adaptation to target sets without the need for costly labels. We evaluate Key2Mesh for the task of estimating 3D human meshes from 2D key-points, in the absence of RGB and mesh label pairs. Our results on widely used H3.6M and 3DPW datasets show that Key2Mesh sets the new state-of-the-art by outperforming other models in PA-MPJPE for both datasets, and in MPJPE and PVE for the 3DPW dataset. Thanks to our model's simple architecture, it operates at least 12× faster than the prior state-of-the-art model, LGD [44]. Additional qualitative samples and code are available on the project website: https://key2mesh.github.io/.