On higher order approximations for hermite-gaussian functions and discrete fractional Fourier transforms


Candan C.

IEEE SIGNAL PROCESSING LETTERS, cilt.14, ss.699-702, 2007 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 14 Konu: 10
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1109/lsp.2007.898354
  • Dergi Adı: IEEE SIGNAL PROCESSING LETTERS
  • Sayfa Sayıları: ss.699-702

Özet

Discrete equivalents of Hermite-Gaussian functions play a critical role in the definition of a discrete fractional Fourier transform. The discrete equivalents are typically calculated through the eigendecomposition of a commutator matrix. In this letter, we first characterize the space of DFT-commuting matrices and then construct matrices approximating the Hermite-Gaussian generating differential equation and use the matrices to accurately generate the discrete equivalents of Hermite-Gaussians.