On higher order approximations for hermite-gaussian functions and discrete fractional Fourier transforms


Candan C.

IEEE SIGNAL PROCESSING LETTERS, cilt.14, sa.10, ss.699-702, 2007 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 10
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1109/lsp.2007.898354
  • Dergi Adı: IEEE SIGNAL PROCESSING LETTERS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.699-702
  • Anahtar Kelimeler: commuting matrices, fractional Fourier transforms, Hermite-Gaussian functions, EIGENVECTORS, MATRICES
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Discrete equivalents of Hermite-Gaussian functions play a critical role in the definition of a discrete fractional Fourier transform. The discrete equivalents are typically calculated through the eigendecomposition of a commutator matrix. In this letter, we first characterize the space of DFT-commuting matrices and then construct matrices approximating the Hermite-Gaussian generating differential equation and use the matrices to accurately generate the discrete equivalents of Hermite-Gaussians.