Atıf İçin Kopyala
FİNASHİN S., Kharlamov V.
Journal of the Institute of Mathematics of Jussieu, cilt.23, sa.1, ss.123-148, 2024 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
23
Sayı:
1
-
Basım Tarihi:
2024
-
Doi Numarası:
10.1017/s1474748022000317
-
Dergi Adı:
Journal of the Institute of Mathematics of Jussieu
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, MathSciNet, Metadex, zbMATH, Civil Engineering Abstracts
-
Sayfa Sayıları:
ss.123-148
-
Anahtar Kelimeler:
Bertini involution, Enumerative invariants, Pin-structures, Real del Pezzo surfaces, Signed count, Welschinger weight
-
Orta Doğu Teknik Üniversitesi Adresli:
Evet
Özet
We propose two systems of intrinsic weights for counting such curves. In both cases the result acquires an exceptionally strong invariance property: it does not depend on the choice of a surface. One of our counts includes all divisor classes of canonical degree 2 and gives in total 30. The other one excludes the class, but adds up the results of counting for a pair of real structures that differ by Bertini involution. This count gives 96.