Graphene oxide reinforced doped dicalcium phosphate bone cements for bone tissue regenerations


Motameni A., Alshemary A. Z., Dalgic A. D., Keskin D., Evis Z.

JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, vol.58, no.5, pp.1633-1647, 2022 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 58 Issue: 5
  • Publication Date: 2022
  • Doi Number: 10.1007/s41779-022-00800-8
  • Journal Name: JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Communication Abstracts, Metadex, Civil Engineering Abstracts
  • Page Numbers: pp.1633-1647
  • Keywords: Dicalcium phosphate, Lanthanum, Graphene oxide, Mechanical properties, Biological properties, MECHANICAL-PROPERTIES, PHASE-TRANSFORMATION, PROTEIN ADSORPTION, HYDROXYAPATITE, LANTHANUM, BRUSHITE, MINERALIZATION, COMPOSITE, BIOCOMPATIBILITY, MONETITE
  • Middle East Technical University Affiliated: Yes

Abstract

Artificial bone cements have widespread applications in orthopedic and dental surgeries. Nevertheless, there is a need to develop novel materials for artificial bone cements due to limitations like short-service life, weak interaction and attachment with living hard tissue, and the inability to facilitate bone regeneration of calcified tissues rather than replacing them. In the present research, a novel combination of lanthanum (La3+) ions doped dicalcium phosphate (DCP) (La-DCP) and 1.5-3.5 wt.% of graphene oxide (GO) doped La-DCP bone cement materials were successfully synthesized and reported for the first time. Acid/base interaction between La-beta-tricalcium phosphate (La-beta TCP) and monocalcium phosphate monohydrate (MCPM) in the presence of water was the basis for making the La-DCP cements. The synthesized cements were characterized using the XRD, FTIR, FESEM, UV-Vis and TGA techniques. Produced material had La-DCP as in the monetite phase, and La-DCP particles were formed in agglomerates of irregular shapes. The presence of GO enhanced the growth rate of monetite particles, significantly decreased the setting time of the La-DCP bone cement, enhanced mechanical properties and enhanced the adsorption capacity of La-DCP. In vitro studies showed that synthesized GO/La-DCP bone cements were biocompatible, and the proliferation and differentiation properties of human osteosarcoma (Saos-2) cells were significantly improved with the addition of GO. In summary, the synthesized GO/La-DCP bone cement materials, which exhibit good biocompatibility and mechanical properties, have the potential to be employed in bone defect healing.