General-Purpose Characteristic Basis Finite Element Method for Multi-Scale Electrostatic and Electromagnetic Problems


Ozgun O., Mittra R., KUZUOĞLU M.

ELECTROMAGNETICS, vol.30, pp.205-221, 2010 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 30
  • Publication Date: 2010
  • Doi Number: 10.1080/02726340903485505
  • Journal Name: ELECTROMAGNETICS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.205-221
  • Middle East Technical University Affiliated: Yes

Abstract

This article presents a noniterative and parallel finite element technique that is tailored for a wide class of electromagnetic boundary problems, covering both quasi-static and time-harmonic regimes. This approach, called the characteristic basis finite element method, combines the domain decomposition technique with the use of characteristic basis functions that are generated by employing a finite number of point charges or dipole-type sources, depending upon whether work is being done in a quasi-static or a time-harmonic regime. Two major advantages of this method are considerable reduction in the matrix size and convenient parallelization, both of which make possible the direct solution of multi-scale problems in an efficient manner. For the static case, the problem of computing the capacitance matrices of 3D interconnects in integrated circuit packaging is considered. For the time-harmonic case, the proposed method is applied to 3D electromagnetic scattering problems. The accuracy of the proposed technique has been validated via a number of numerical simulations, covering a wide variety of configurations.