MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, cilt.47, sa.3, ss.293-298, 2005 (SCI-Expanded)
An extension of the discrete Fourier transform (DFT)-based forward-backward algorithm is developed using the virtual-element approach to provide a fast and accurate analysis of electromagnetic radiation/scattering front electrically large, planar, periodic, finite (phased) arrays with arbitrary boundaries. Both the computational complexity and storage requirements of this approach are O(N-tot) (N-tot is the total number of unknowns). The numerical results for both printed and freestanding dipole array's with circular and/or elliptical boundaries are presented to validate the efficiency, and accuracy of this approach. (c) 2005 Wiley Periodicals, Inc.