Dynamic proximity interaction profiling suggests that YPEL2 is involved in cellular stress surveillance


Turan G., OLGUN Ç. E., AYTEN H., Toker P., Ashyralyyev A., Savaş B., ...Daha Fazla

Protein Science, cilt.33, sa.2, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 33 Sayı: 2
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1002/pro.4859
  • Dergi Adı: Protein Science
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: ELAVL1, proximity interactions, SQSTM1, TurboID, YPEL2
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

YPEL2 is a member of the evolutionarily conserved YPEL family involved in cellular proliferation, mobility, differentiation, senescence, and death. However, the mechanism by which YPEL2, or YPEL proteins, mediates its effects is largely unknown. Proteins perform their functions in a network of proteins whose identities, amounts, and compositions change spatiotemporally in a lineage-specific manner in response to internal and external stimuli. Here, we explored interaction partners of YPEL2 by using dynamic TurboID-coupled mass spectrometry analyses to infer a function for the protein. Our results using inducible transgene expressions in COS7 cells indicate that proximity interaction partners of YPEL2 are mainly involved in RNA and mRNA metabolic processes, ribonucleoprotein complex biogenesis, regulation of gene silencing by miRNA, and cellular responses to stress. We showed that YPEL2 interacts with the RNA-binding protein ELAVL1 and the selective autophagy receptor SQSTM1. We also found that YPEL2 localizes stress granules in response to sodium arsenite, an oxidative stress inducer, which suggests that YPEL2 participates in stress granule-related processes. Establishing a point of departure in the delineation of structural/functional features of YPEL2, our results suggest that YPEL2 may be involved in stress surveillance mechanisms.