Environmental effect and genetic influence: a regional cancer predisposition survey in the Zonguldak region of Northwest Turkey


Creative Commons License

KADİR S., Onen-Hall A. P., Aydin S. N., Yakicier C., Akarsu N., Tuncer M.

ENVIRONMENTAL GEOLOGY, cilt.54, sa.2, ss.391-409, 2008 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 54 Sayı: 2
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1007/s00254-007-0826-3
  • Dergi Adı: ENVIRONMENTAL GEOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.391-409
  • Orta Doğu Teknik Üniversitesi Adresli: Hayır

Özet

The Cretaceous-Eocene volcano-sedimentary units of the Zonguldak region of the western Black Sea consist of subalkaline andesite and tuff, and sandstone dominated by smectite, kaolinite, accessory chlorite, illite, mordenite, and analcime associated with feldspar, quartz, opal-CT, amphibole, and calcite. Kaolinization, chloritization, sericitization, albitization, Fe-Ti-oxidation, and the presence of zeolite, epidote, and illite in andesitic rocks and tuffaceous materials developed as a result of the degradation of a glass shards matrix, enclosed feldspar, and clinopyroxene-type phenocrysts, due to alteration processes. The association of feldspar and glass with smectite and kaolinite, and the suborientation of feldspar-edged, subparallel kaolinite plates to fracture axes may exhibit an authigenic smectite or kaolinite. Increased alteration degree upward in which Al, Fe, and Ti are gained, and Si, Na, K, and Ca are depleted, is due to the alteration following possible diagenesis and hydrothermal activities. Micromorphologically, fibrous mordenite in the altered units and the presence of needle-type chrysotile in the residential buildings in which cancer cases lived were detected. In addition, the segregation pattern of cancer susceptibility in the region strongly suggested an environmental effect and a genetic influence on the increased cancer incidence in the region. The most likely diagnosis was Li-Fraumeni syndrome, which is one of the hereditary cancer predisposition syndromes; however, no mutations were observed in the p53 gene, which is the major cause of Li-Fraumeni syndrome. The micromorphology observed in the altered units in which cancer cases were detected may have a role in the expression of an unidentified gene, but does not explain alone the occurrence of cancer as a primary cause in the region.