ISI BILIMI VE TEKNIGI DERGISI/ JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, cilt.42, sa.1, ss.91-100, 2022 (SCI-Expanded)
We present a GPU-accelerated method for large scale, coupled incompressible fluid flow and heat transfer problems. A high-order, nodal discontinuous Galerkin method is utilized to discretize governing equations on unstructured triangular meshes. A semi-implicit scheme with explicit treatment of the advective terms and implicit treatment of the split Stokes operators are used for time discretization. The pressure system is solved with a conjugate gradient method together with a fully GPU-accelerated multigrid preconditioner. The code is built on scalable libParanumal solver which is a library of high-performance kernels for high-order discretizations. Performance portability is achieved by using the open concurrent compute abstraction, OCCA. A set of numerical experiments including free and mixed convection problems indicate that our approach experimentally reaches design order of accuracy.