Nutrient enrichment—but not warming—increases nitrous oxide emissions from shallow lake mesocosms


Audet J., Levi E. E., Jeppesen E., Davidson T. A.

Limnology and Oceanography, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1002/lno.12709
  • Dergi Adı: Limnology and Oceanography
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Animal Behavior Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Environment Index, Geobase, Pollution Abstracts, Veterinary Science Database
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Shallow lakes and ponds play a crucial role in the processing of carbon and other nutrients. However, many lakes and ponds worldwide are affected by climate change and nutrient pollution. How these pressures affect the emission of the greenhouse gas nitrous oxide (N2O) is unclear. Warming and eutrophication are expected to increase the production and emission of N2O in lakes and ponds, but changes in ecological structure and function may complicate these seemingly straightforward relationships. In this study, we used the world's longest running, mesocosm-based, freshwater climate change experiment to disentangle the effect of nutrient enrichment and warming on N2O emissions. We gathered a large dataset on N2O concentrations and ancillary variables, comprising three sampling campaigns between 2011 and 2020 and a total of 687 individual mesocosm measurements. Our results demonstrated that nutrient enrichment increased N2O emissions, while warming (+2.5–4.0°C and +3.75–6.0°C) had no discernable effect. Our study indicates that curtailing nitrogen influxes into lakes and ponds is the most effective strategy to minimize N2O emissions, and while warming may influence N2O emissions, it does not appear to be a direct driver. These findings underscore the importance of prioritizing nitrogen mitigation efforts to curb N2O emissions from shallow lakes and ponds.