JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, vol.259, pp.599-621, 2014 (SCI-Expanded)
The Discrete Log Problem (DLP), that is computing x, given y = alpha(x) and (alpha) = G subset of F-q*, based Public Key Cryptosystem (PKC) have been studied since the late 1970's. Such development of PKC was possible because of the trapdoor function! : Z(l) -> G = (alpha) subset of F-q*, f (m) = alpha(m) is a group homomorphism. Due to this fact we have; Diffie Hellman (DH) type key exchange, EIGamal type message encryption, and Nyberg-Rueppel type digital signature protocols. The cryptosystems based on the trapdoor f (m) = am are well understood and complete. However, there is another trapdoor function f : Z(l) -> G, f (m) > Tr(alpha(m)), where G =